首页> 外文OA文献 >A k-means-based formation algorithm for the delay-aware data collection network structure
【2h】

A k-means-based formation algorithm for the delay-aware data collection network structure

机译:基于k均值的时延感知数据收集网络结构形成算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A wireless sensor network (WSN) consists of a large number of wireless sensor nodes that collect information from their sensing terrain. Wireless sensor nodes are, in general, battery-powered devices with limited processing and transmission power. Therefore, the lifetime of WSNs heavily depends on their energy efficiency. Multiple-cluster 2-hop (MC2H) network structure is commonly used in WSNs to reduce energy consumption due to long-range communications. However, networks with the MC2H network structure are commonly associated with long data collection processes. The delay-aware data collection network structure (DADCNS) is proposed to shorten the duration of data collection processes without sacrificing network lifetime. In this paper, a k-means-based formation algorithm for the DADCNS, namely DADCNS-RK, is proposed. The proposed algorithm can organize a network into the DADCNS, while minimizing the total communication distance among connected sensor nodes by performing k-means clustering recursively. Simulation results show that, when comparing with other DADCNSs formed by different algorithms, the proposed algorithm can reduce the total communication distances of networks significantly.
机译:无线传感器网络(WSN)由大量无线传感器节点组成,这些节点从其传感地形中收集信息。通常,无线传感器节点是电池供电的设备,其处理和传输功率有限。因此,无线传感器网络的寿命在很大程度上取决于其能效。 WSN中通常使用多集群2跳(MC2H)网络结构,以减少由于远程通信而造成的能耗。但是,具有MC2H网络结构的网络通常与长数据收集过程相关联。提出了可感知延迟的数据收集网络结构(DADCNS),以缩短数据收集过程的持续时间,而不牺牲网络寿命。本文提出了一种基于k均值的DADCNS编队算法,即DADCNS-RK。所提出的算法可以将网络组织到DADCNS中,同时通过递归执行k-means聚类来最小化连接的传感器节点之间的总通信距离。仿真结果表明,与不同算法组成的其他DADCNS相比,该算法可以显着缩短网络的总通信距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号